Precision Clocks Using Superconducting Niobium Cavities*

Jeffrey T. Huynh¹, Dr. Wen Jiang², Prof. Nai-Chang Yeh¹, Donald Strayer³, Mark Lysek³, Nils Asplund¹, and John Gatewood¹

- 1. Physics Department, Caltech
- 2. Resident Research Associate of the National Research Council
- 3. Jet Propulsion Laboratory, Caltech

* Work performed at the Jet Propulsion Laboratory and Caltech under an ATD grant from NASA's Microgravity Research Division. JPL is supported by a contract from NASA

INTRODUCTION

- Applications of high-Q cavities: precise time-keeping, planetary navigation, precise measurements of physical constants.
- Low temperature superconductor cavity offers a feasible solution because of its extremely high quality factors (Q's).
- The record Q is of the order of 10^{11} (Turneaure and Viet, 1970).
- Goal: Utilizing modern electronics, we will build a clock with stability on the order of 10⁻¹⁷ using cavities with Q of the order of 10¹⁰.

Ultra-high Vacuum Annealing

- E-beam heating cavity up to 1900 °C for 12 hours or more in pressure as low as 1x10⁻⁹ Torr.
- Besides reducing irregularities on cavity surfaces and in the lattice, vacuum annealing will also help drive out H₂ and O₂ from within the niobium lattice.

Figure 2.1. Field patterns for TE_{011} mode.

Quality Factor Characterization

- Use the Microwave Characterization System to find the resonant frequency and measure the Q-value of an annealed cavity.
- The system has resolution of 1 mHz and is capable of measuring Q-values on the order of 10¹⁰-10¹².

Refrigeration and Cavity Mounting

Temperature Control

- $(1/f \partial f/\partial T) \sim -10^{-10} \text{ K}^{-1}$ at 2 K. So we need to have temperature stability $\sim 10^{-7} \text{ K}$ to obtain frequency stability $\sim 10^{-17}$.
- High-Resolution Thermometry uses a SQUID magnetometer with resolution of $\sim 10^{-10}$ K to obtain stability of $\sim 10^{-9}$ K.

The Niobium Cavity

- Designed for TE₀₁₁ mode at 14.12 GHz.
- A groove near the welded joint splits the degeneracy between TE and TM modes

Microwave Characterization System

Characterization of Superconducting Cavity

RESULTS

- An anodized cavity gives a Q of 10⁷ at 2K.
- A cavity etched in acid and annealed at 1400°C for 12 hours in ultra-high vacuum gives a Q of 10⁸ at 1.77 K.
- Will attempt annealing at higher temperatures (near 1800°C) and for longer period of time.

Quantifying Stability

1. In frequency domain, use the spectral density:

$$S_y(f) = \frac{S_v(f)}{v^2}$$

 $S_{\nu}(f)$: spectral density of frequency fluctuations

v(t): time-dependent instantaneous frequency

f: time-independent Fourier frequency

2. In time domain, use the Alan variance:

$$\sigma_y^2(\tau) = \frac{1}{2} \left\langle \left(\overline{y}_2 - \overline{y}_1 \right)^2 \right\rangle$$

Estimator:

$$\sigma_y^2(\tau, m) = \frac{1}{2(m-1)} \sum_{i=1}^{m-1} (\overline{y}_{i+1} - \overline{y}_i)^2$$

$$y_i = f(t_k + t) - f(t_k) / \tau$$

 τ : averaging time

m: number of samples